ANYAGVIZSGÁLÓK LAPJA MINŐSÉGBIZTOSÍTÁS * ÁLLAPOTELLENŐRZÉS Elektronikus 2008/2

VIZSGÁLATI MÓDSZEREK

TESTING METHODS

Érintésmentes felületi érdességmérés lézer-speckle módszerekkel

Non-contact roughness measurement based on laser speckle techniques HORVÁTH Balázs¹

Kulcsszavak: felületi érdesség, speckle kontraszt, speckle korreláció **Keywords**: surface analysis, roughness, speckle contrast, speckle correlation

Summary

This study describes an optical surface analysis method based on the statistical and correlation evaluation of laser speckle images that can be used for non-contact roughness measurement of technical surfaces. We present the theoretical fundamentals, the possibilities of evaluation and the application ranges of the methods. A simple sensor setup will be described for the roughness analysis of TiN and NaCo[®] coatings.

<u>Összefoglalás</u>

Egy optikai felületvizsgáló eljárást mutatunk be mely a koherens szóródás által generált lézerspeckle mintázat (szemcsekép) statisztikai és korrelációs kiértékelésén alapul és a technikai felületek gyors, érintésmentes érdességmérésre használható. Ismertetjük az elméleti összefüggéseket, összefoglaljuk a speckle-képek kiértékelésének lehetőségeit és az egyes módszerek alkalmazhatóságainak határait. Bemutatásra kerül egy egyszerű szenzorelrendezés, ami TiN és NaCo[®] szerszámbevonatok érdességének ellenőrzésére lett összeállítva.

1. Bevezetés

A műszaki gyakorlatban sokszor van szükség az érdességparaméterek gyors, érintésmentes meghatározására, ezért a fényszóródáson alapuló felületellenőrző eljárások régóta a fejlesztések középpontjában állnak (pl. T/S - total integrated scattering vagy ARS – angle-resolved scattering módszerek). A nyolcvanas évek elejétől kezdtek kísérletezni a lézeres szemcseképhatás (speckle) alkalmazásával felületvizsgálat céljából [1]. Kezdetben a speckle-mező intenzitásait fotódiódákkal parciálisan integrálva érzékelték, ami így nem adott kielégítő eredményeket, viszont a CCD és CMOS szenzorok megjelenésével a módszer újra előtérbe került. Mivel paraméteres módszerről van szó, a gyors mérés, az érintésmentesség, a gyártási folyamatba való integrálhatóság és a sok esetben egyszerű és költséghatékony szenzorfelépítés előnyeit hordozza.

2. A speckle-jelenség

Ha egy optikailag érdes felületet (R_g~ λ) koherens, monokromatikus fénnyel világítunk meg, akkor a reflektált nyalábban egy tipikus granulált szemcsekép vagy speckleintenzitásminta, eloszlás látható (1. ábra). Ennek oka, hogy mivel a felület profilpontjainak magasságai eltérőek, az egyes hullámok által megtett optikai úthossz és így a megfigyelési síkot elérő hullámok fázisai is eltérnek egymástól. Ezek a hullámok az egyes megfigyelési pontokban interferálnak egymással és így lokális erősítéseket és kioltásokat hoznak létre. Ilyen szemcseképet egyrészt a felületi reflexió után a diffúz szórt mezőben láthatunk (objektív specke) vagy optikai leképezés után a képsíkban (szubjektív speckle). Bár a fizikai magyarázatuk kissé eltér, technikai érdességmérésre mindkét megjelenési forma alkalmas.

3. Kiértékelési lehetőségek

A speckle-képek fontos jellemzője a kontrasztjuk (moduláltságuk), amit az intenzitásértékekből számolt szórás és a középintenzitás hányadosaként definiálunk (a csúcsos zárójelek átlagértékeket jelölnek):

$$K = \frac{\sigma_I}{\langle I \rangle} = \frac{\sqrt{\left\langle \left(\langle I \rangle - I \right)^2 \right\rangle}}{\langle I \rangle}$$

A Huygens-elvre támaszkodva és a profilpontok normáleloszlását feltételezve egy elméleti összefüggés vezethető le a kontraszt és a reflektáló felület profilpontjainak szórása – vagyis az R_q érdességparaméter – között [2]. A 2. ábra ezt az összefüggést mutatja különböző hullámhosszúságú megvilágításnál. A kontraszt a felületi érdességgel arányosan monoton növekszik, míg el nem éri a maximális 1 értéket. A szemcseképek ezen a tulajdonsága adja a speckle-kontraszt érdességmérés alapját, ami relatív kis érdességekre egy egyszerű összefüggést biztosít. A kezdeti szakasz meredeksége az alkalmazott hullámhossztól függ, a módszer az R_q< λ /4 határig használható.

A kiértékelések másik csoportját képviselik a korrelációs technikák. Ekkor több speckle-képet is felveszünk a megvilágítás valamely paraméterének módosítása mellett és az ezen eloszlásokból

¹Ilmenaui Műszaki Egyetem, Mikrotechnika Tanszék, Dr.-Ing., tudományos munkatárs Tel.: +493641 282589; fax: +493641 282530. <u>bh1@innovent-jena.de</u>

ANYAGVIZSGÁLÓK LAPJA MINŐSÉGBIZTOSÍTÁS * ÁLLAPOTELLENŐRZÉS Elektronikus 2008/2

számított korrelációs együttható adja az érdességparamétert. Vagyis az eloszlások "hasonlóságát" vizsgáljuk. Attól függően, hogy a megvilágítás mely jellemzőjét módosítjuk a mérés során, megkülönböztetünk szögbeli- és spektrális korrelációt (a beesési szöget ill. a hullámhosszt változtatjuk). Több szerző használja a helybeli korrelációt is, ahol a munkadarab kismértékű eltolása után veszik fel a második speckle-képet [3,4]. A korrelációs együttható a következő képlettel definiált:

$$\rho_{12} = \frac{\langle (\langle I_1 \rangle - I_1) \cdot (\langle I_2 \rangle - I_2) \rangle}{\sigma_1 \cdot \sigma_2} = \frac{\langle I_1 I_2 \rangle - \langle I_1 \rangle \langle I_2 \rangle}{\sigma_1 \cdot \sigma_2}$$

ahol σ_1 és σ_2 az I_1 és I_2 eloszlásokból számított intenzitás-szórások. A korrelációs módszerek előnye a szélesebb méréstartomány (R_q <3-5 µm), viszont elsősorban teljesen modulált speckleeloszlások esetén nyújt megbízható eredményt (vagyis amikor a kontraszt 1, lásd 2. ábrát). Ekkor is levezethetők közelítő összefüggések [2], a 3. ábra a spektrális korreláció elméleti érdesség függését mutatja eltérő hullámhosszkülönbségeknél. Megfelelő beállítás esetén az érdességmérés R_a=3-4 µm-ig kiterjeszthető, ami a hagyományos fényszóródási módszerrel összehasonlítva egy pozitív tulajdonság. A szög- és helybeli korrelációk esetére azonos alakú összefüggés vezethető le, ahol az alkalmazott beesési szögkülönbség vagy felületeltolás növekedése hasonló módon erősebb dekorreláltsághoz vezet.

érdes felület

2. ábra: A speckle-kontrasz elméleti érdesség-függése Figure 2: Theoretical speckle contrast versus surface roughness

 3. ábra: A korrelációs együttható elméleti érdesség függése
Figure 3: Correlation coefficient versus surface roughness

4. A kísérleti elrendezés

A feladat olyan simítókések éleinek az érdesség ellenőrzése volt, melyek függőleges irányban jól hozzáférhetőek voltak. A munkadarabok TiN vagy NaCo[®] (márkanév, a NanoComposite rövidítése) bevonatokkal készültek, melyek eltérő optikai tulajdonságokkal rendelkeztek (szín, reflektivitás). A szerszámkopás hatására a profilmélység megnő, az érdesség emelkedik. A kísérleti elrendezést a 4. ábra mutatja. Fényforrásként egy 15 mW teljesítményű HeNe gázlézert használtunk (1) λ =633 nm hullámhosszal és P=15 mW teliesítménnyel. A speckle-eloszlás kicsatolására egy polarizáló sugárosztót használunk (3). A nyaláb polarizációs síkját a (2) polarizátorral úgy állítjuk be, hogy az osztókocka a teljes intenzitást a minta irányába törje meg. A minta (5) és a sugárosztó közé egy $\lambda/4$ fázislemezt helyezünk (4) amin a detektálandó nyaláb kétszer áthalad és így a beeső és a reflektált nyaláb egymásra 90°-ban lineárisan polarizált lesz. Ekkor az osztókocka a reflexiót teljes egészében transzmittálja a detektor felé. Ezzel az elrendezéssel elérhető, hogy valóban csak a mintáról reflektált intenzitás tudjon áthaladni a sugárosztón és érje el a detektort. Az F=8 mm fókusztávolságú lencse (6) a centrális spot-ot leképezi а detektorra. melv eav 1024x1024 pixel felbontású logaritmikus karakterisztikájú CMOS kamera. A (7) blende az F lencse fókuszsíkjába pozícionált és az egyéb zavaró reflexiókat (sugárosztó és a fázislemez felületeiről) takarja ki. Lényeges, hogy az F lencse a minta felületét a detektor mögé képezi le, ezzel a felület struktúrája nem zavarja a speckle-eloszlást. Bár a próbadarab és a detektor között egy lencse található, a mérés mégis az objektív speckle kiértékelésén alapszik, a lencse csak az objektív mintázatot "nagyítja". Az szemcsék átmérője ca. 30-60 pixelnek felelt meg a detektor felületén. A mintákat egy mikroszkópasztalra helyeztük, mely 1 µmes pontosságú pozicionálást biztosított. A merőleges beesés miatt a minta távolsága a szen-

zortól irreleváns. Látható, hogy a speckle-kép érzékelése egy kedvező optikai elrendezéssel

megoldható és a módszer egy kompakt szenzorfelépítést biztosít.

4. ábra: A kísérleti szenzorelrendezés Figure 4: Experimental setup for speckle measurements

5. Mérési eredmények

A kísérleti mérésekhez egy 24 mintából álló próbasorozatot használtunk, melyből 12 TiN és 12 NaCo bevonatot kapott. Az eltérő érdesség értékeket polírozással állítottuk elő a jellemző tartományban R_a=0,035 µm-től R_a=0,24 µm-ig. Az szenzorelrendezés jellemző érdesség-– a tartomány ismeretében - elsősorban a specklekontraszt mérésére lett összeállítva, de mivel a minták pozícionálhatósága biztosított volt, helybeli korrelációkat is számoltunk. A speckle-kontraszt mérések eredményei az 5. ábrában láthatók. A módszer előnye egyértelmű: mivel a kontrasztot a profilmélység által generált moduláció szabja meg és azt is a középintenzitásra "normáljuk", a munkadarab optikai tulajdonságai nem befolyásolják a mérést és minden anyagra azonos mérőmodellt kapunk (ez pl. a TIS módszerre nem igaz). Az adott hullámhosszon a mérés felső határa R_a=0,15 µm-nél lenne (lásd 2. ábrát), a módszer mégis a teljes érdesség-tartományban kielégítő eredményt adott. Az 6. ábra képei jól szemléltetik a detektált szemcseképek kontrasztjának változását az érdesség növekedésével. Az irodalom több helyen említi, hogy a speckle-eloszlások kontrasztját a felület horizontális érdesség-paraméterei (λ_a , Λ_k) nem befolyásolják, csak a profilmélység, amit saját szimulációs eredmények is alátámasztanak [5]. Így a mérőmodell elsősorban a vertikális érdességparaméterekre alkalmazható (R_a, R_g, R_z).

A helybeli korrelációs vizsgálatoknál pár próbadarabbal előméréseket végeztünk az ideális felületeltolás meghatározásához és a méréseket végül $\Delta x=4 \ \mu m$ -es beállítással végeztük el. Ekkor a kor

relációs együtthatók egy kedvező 0.6-0.8 tartományba estek és optimális meredekséget adtak. Az eredményeket az 7. ábra mutatja. A két bevonatanyagnál mért korrelációs eredmények itt is azonos viselkedést mutatnak és a mérőmodell egyetlen regressziós egyenessel megadható. Kisebb érdességtartományban (R_q <0.1 µm) a mérési bizonytalanság megnő, ami az ebben a tartományban még nem teljesen kifejlett szemcseképekkel magyarázható. Mind a speckle-kontraszt mind a speckle-korrelációs technikákra igaz, hogy a regressziós modell bármely vertikális érdességparaméterre felállítható, mivel azok kvázi-lineáris kapcsolatban vannak (ismert összefüggés, pl.

ANYAGVIZSGÁLÓK LAPJA MINŐSÉGBIZTOSÍTÁS * ÁLLAPOTELLENŐRZÉS Elektronikus tolyóirat 2008/2

 6. ábra: Detektált speckle-eloszlások pár érdesség esetén
Figure 6: Detected speckle images of some probes

 $R_a \approx R_a \sqrt{\pi/2}$). A gyakorlati tapasztalat mégis azt

mutatja, hogy a speckle-statisztika mérőszámai legbiztosabban a profilpont-magasságok négyzetes középeltérésével, vagyis az R_q vagy RMS (root-mean-square) értékekkel hozhatók összefüggésbe.

probe roughness

7. Összefoglalás, konklúzió

A viszonylag egyszerű és kompakt szenzorfelépítéssel megvalósítható speckle-érdességmérés jó alternatívát jelent a hagyományos *TIS* és *ARS* fényszóródási módszerekkel szemben. Az eljárás előnye, hogy mivel a mérőparamétert nem intenzitásértékekből, hanem a speckle-képek struktúrájából számoljuk, a felület optikai tulajdonságai nem befolyásolják a kiértékelést. Alacsonyabb érdességeknél R_q<0,15-0,25 µm–ig (az alkalmazott hullámhossztól is függően) a speckle-kontraszt, a fölött pedig valamelyik speckle-korrelációs technika használandó. A szerszámbevonatok monitorozására összeállított saját kísérleti elrendezéssel is kielégítő eredményeket kaptunk az R_q=0,03-0,24 µm-es érdességtartományban.

Irodalom

- [1] Ruffing B.: Berührungslose Rauhigkeitsmessung technischer Oberflächen mit Speckle-Korrelationsverfahren. *Dissertation*, Universität Karlsruhe (TH), 1982.
- [2] Dainty J.C.: Laser speckle and related phenomena. *Springer*, 1984.
- [3] Tay C.J., Toh S.L., Shang H.M., Zhang J.B.: Whole-field determination of surface roughness by speckle correlation, *Applied Optics*, Volume 34, Issue 13, pp. 2324-35, 1995.
- [4] Leger D., Perrin J.C.: Real-time measurement of surface roughness by correlation of speckle patterns. *Journal Optical Society of America,* Volume 66, Issue 11, pp. 1217-, 1976.
- [5] Horvath B.: Entwicklung einer optischen Messmethode zur Analyse lateraler Mikrostrukturoberflächen. *Technische Universität Ilmenau*, Dissertation, 2006.