Dendritközi porozitás töretfelületen történő kvantitatív vizsgálata

Quantitative examination of interdendritic porosity on fracture surface

Kazup Ágota^a, Koncz-Horváth Dániel^b, Gácsi Zoltán^c

^a Miskolci Egyetem, Fémtani, Képlékenyalakítási és Nanotechnológiai Intézet, tudományos segédmunkatárs, agota.kazup@uni-miskolc.hu
^b Miskolci Egyetem, Fémtani, Képlékenyalakítási és Nanotechnológiai Intézet, tudományos főmunkatárs, daniel.koncz-horvath@uni-miskolc.hu
^c Miskolci Egyetem, Fémtani, Képlékenyalakítási és Nanotechnológiai Intézet, professor emeritus, zoltan.gacsi@uni-miskolc.hu

Kulcsszavak Pásztázó elektronmikroszkópia (SEM), Töretfelület, Porozitás, Képelemzés, Auto-szegmentáció	Absztrakt A szakirodalmakban publikált kutatásokban a töretfelületeken látható dendritközi porozitás kvantitatív vizsgálatának módszertani ismertetése hiányos. Az itt bemutatni kívánt kutatás célja, hogy részletesen ismertesse a dendritközi pórusok töretfelületen, számítógéppel történő elemzését, mely a hagyományos képelemző módszerekkel nem megvalósítható. Öntött AlSi7Mg0.3 ötvözet szakítóvizsgálata útján keletkezett töretfelületekről pásztázó elektronmikroszkópos (SEM) felvételeket készítettünk több nagyításban, majd a MIPAR képelemző szoftver segítségével meghatároztuk a pórusok vetített területéből a pórus területarányt, valamint vizsgáltuk a legnagyobb pórus arányát is.
Keywords	Abstract
Scanning electronmicroscopy	In the research published in the literature, the methodological description of the quantitative examination of the interdendritic porosity
(SEM),	visible on fracture surfaces is incomplete. The purpose of the research to be presented here is to describe in detail the computer analysis
Fracture surface,	of interdendritic pores on the fracture surface, which cannot be realized with basic image analysis methods. We took scanning electron
Porosity,	microscopic (SEM) images of the fracture surfaces created by the tensile test of cast AlSi7Mg0.3 alloy in several magnifications, then using
Image analysis,	the MIPAR image analysis software, we determined the pore area ratio from the projected area of the pores, and also examined the ratio of
Auto-segmentation	the largest pore.

1. Bevezetés

A képelemzés különböző képalkotó módszerekkel készített felvételek (pl. szövetszerkezetről) számítógéppel történő kvantitatív (számszerű) jellemzése, mellyel meghatározható a rajtuk látható objektumok mennyisége, mérete, morfológiája, orientációja és eloszlása. Szürkekép esetén az eltérő szürkeségi szintű objektumok (8 bit-es kép esetén pixelenként 0-tól, ami abszolút fekete, 255-ig, ami abszolút fehér, terjed a szint skála) elválasztása egy szürkeségi küszöbértékkel történik, amellyel a vizsgálni kívánt területek detektálhatók (kijelölhetők) [1-7].

Mesterséges intelligenciával (MI) a vizsgálandó területek automatizált módon mérhetők meg. A szoftver algoritmusa néhány minta segítségével tanítható, majd önállóan, külső beavatkozás nélkül képes detektálni az objektumokat [7-12]. Az 1. ábrán látható SEM felvételeken egy szerkezeti acél különböző szövetelemeit detektálták az MI segítségével [12-13]. Az algoritmus a betanítása

során képes megtanulni és felismerni a különböző szürkeségi szintű és struktúrájú, több fázisból álló szövetelemeket is. Az ún. "Deep Learning (DL)", tanításon alapuló vizsgálatokat fokozott odafigyeléssel szükséges elvégezni, mert a betanítási folyamaton múlik az algoritmus detektálási pontossága. A betanítást anyagtudományban jártas szakemberek végzik, akiknek az a feladata, hogy manuálisan nagy pontossággal jelöljék meg a fázisokat és szövetelemeket a felvételeken. A helytelen kijelölés valószínűsége nagyobb a nehezen értelmezhető, összetett anyagokat ábrázoló mikroszkópos képek esetén. A manuális kijelölés munka- és időigényes folyamat lehet. Bizonyos szoftverekben/szoftververziókban nem érhető el közvetlenül adott szövetszerkezet elemzéséhez szükséges, előre elkészített algoritmus, vagy az nem megfelelően alkalmazható

a felvételeken előforduló zajok miatt, így a detektálást a kívánt célnak megfelelően külön kell elvégezni [12].

A töretfelületeken látható dendritközi pórusok szürkeségi küszöbértéken alapuló elválasztása nem lehetséges a töret jelentősen egyenetlen felülete miatt, ugyanis mind árnyékos, mind erősen fényes területek alkotják a felvételeket. Emiatt különböző mértékű szürkeségi szint átfedés van a pórus és a háttérterület szürkeségi szintjei között. Az árnyékos és fényes területek eloszlása inhomogén, arányuk egyenlőtlen. Ezáltal minden egyes pórusról készített SEM felvétel egyedi. Hasonló felvételek képelemző módszereikre nem tértek ki a szakirodalmakban, olykor a képelemzés folyamatának leírása a pórusok "körül rajzolásának" bemutatásáig terjed [14-22].

Publikációnk célja, hogy bemutassa a töretfelületeken látható dendritközi porozitás képelemzésének a folyamatát, hogy aztán az így kapott eredmények további kutatásokhoz felhasználhatóak legyenek.

1. ábra: A martenzit, temperált martenzit, bainit és perlit fázisok detektálása szerkezeti acél pásztázó elektronmikroszkópos felvételein [12, 13]

2024/I. lapszám

2. ábra: Szakító próbatest töretfelületének teljes keresztmetszetét ábrázoló pásztázó elektronmikroszkópos felvétel, melyen a dendritközi pórusok jelölésre kerültek

2. Anyagok és módszerek

A vizsgálatok során AlSi7Mg0.3 összetételű öntött és hőkezelt autóipari alkatrészekből kimunkált, összesen 48 db szakító próbatest töretfelületét vizsgáltuk. A próbatestek keresztmetszete 2 mm x 10 mm volt. A 2. ábra egy teljes töretfelületnek a felvételét mutatja be, melyeket

3. ábra: Dendritközi pórusok nagy felbontású felvételei: a) és b) 100x; c) 200x plazma fókuszált ionsugaras pásztázó elektronmikroszkóppal (PFIB-SEM) vizsgáltuk a 3D Finomszerkezet Vizsgáló Laboratóriumban 100x, 200x és 500x-os nagyításokban, szekunder elektronsugarak segítségével. A vizsgálat során a töretfelület minden esetben szívós volt. A 3. ábra nagyobb nagyítású felvételeket ábrázol a töretfelületeken lévő dendritközi pórusokról.

A töretfelületekről készült mikroszkópos felvételeket a MIPAR képelemző szoftver segítségével elemeztük auto-szegmentációs algoritmussal. Ennek megfelelően manuális úton megjelöltük a detektálandó pórusokat és azok határvonalát a 3. ábrán látható módon (ld. piros görbék), illetve hasonló módon a felvétel többi részét is, amitől el kívántuk választani a pórusokat. A képelemző algoritmus a jelölések alapján felismerte a pórusok határvonalait (4. ábra). A szakirodalmakban fellelhető, töretfelületeken történő képelemző vizsgálatok is ehhez hasonlóan történhettek [14-22]. A SEM felvételek felbontása a nagyítástól függően 1,36 µm (100x), 0,68 µm (200x) és 0,27 µm (500x) volt.

A MIPAR képelemző szoftverben alkalmazható autoszegmentációs eljárások¹ közül az úgynevezett "Smart Find" algoritmust alkalmaztuk, ami egy éleket és metszővonalakat kereső módszerrel való szegmentálást alkalmaz a felvételen látható objektumok határainak automatikus meghatározásához a manuálisan meghatározott jelölők alapján [23]. Más szakirodalmak szerint a szegmentálás folyamata az úgynevezett "Lazy Snapping" interaktív képmetsző eszközön alapul, amely a kivágni, vagy jelen folyamatban a detektálni kívánt objektumok határfelületét hatékonyan határozza meg, alacsony kontrasztú élek jelenléte esetén is [26-28].

Az így detektált pórusok jellemzőit számszerűen mértük meg a képelemző szoftver segítségével. A pórusok vetített területét ($A_{Proj, töretfelület}$ [mm²]) határoztuk meg, majd számoltuk a töretfelületen látható porozitást ($A_{A, Proj, töretfelület}$ [%]) az (1) összefüggés szerint. Az így meghatározható pórusterület vetített terület, ugyanis a felületnek a felvétel síkjára merőlegesen térbeli kiterjedése van. A próbatestek szakítóvizsgálat során befűződött keresztmetszetét ($A_{keresztmetszet}$ [mm²]) a 2. ábrán látható teljes töret szélességének (x [mm]) és vastagságának (y [mm]) képelemző szoftverrel történő mérésével határoztuk meg (2). Az elemzés folyamatát az 5. ábra mutatja be.

¹ ún. "Smart Find, Geodesic Distance [24] és Marker-alapú Watershed" [25] szegmentációs eljárások.

4. ábra: Pásztázó elektronmikroszkóppal megfigyelt töretfelületen látható dendritközi pórus képelemzése a MIPAR szoftver auto-szegmentációs algoritmusával:

 a) szürkekép a töretfelületről,
 b) a detektált dendritközi pórus

5. ábra: A töretfelületekről pásztázó elektronmikroszkóppal készített felvételek képelemzésének folyamata

$$A_{A, Proj, töretfelület} = \frac{A_{\sum vetített pórus terület}}{A_{ker esztmetszet}} 100,$$
(1)

$$A_{keresztmetszet} = xy$$
. (2)

3. Eredmények és diszkusszió

A töretfelületek kvantitatív elemzésével számos kutatás foglalkozik, viszont nem kellő részletességgel mutatják be annak folyamatát [14-22]. A felületen meghatározott pórusjellemzők, mint például a pórusok vetített területének ($A_{Proj, töretfelület}$), vagy területarányának ($A_{A, Proj, töretfelület}$) változását hasonlítják össze az öntvények mechanikai paramétereinek változásával (pl. a folyáshatárral, sza-kítószilárdsággal és nyúlással). A pórusok mechanikai tulajdonságokra gyakorolt hatásának és a köztük lévő kapcsolat megismerésének kérdése kulcsfontosságú a tönkremeneteli folyamatok mélyebb megértéséhez, ami elősegíti az öntészeti gyártástechnológia és a szabványok fejlődését.

A pórusszerkezet hatással van a húzó terhelés során végbemenő deformáció heterogenitására a szakítóvizsgálat során. A pórusok csökkentik a terhelt anyag mennyiségét adott keresztmetszeten, valamint az összetett morfológiájú, egyenetlen felületekkel rendelkező pórusok mentén nagyobb feszültségállapotok alakulnak ki. A terhelés tengelyirányában vetített pórusterület bizonyos mértékig jellemzi a pórusok térbeli kiterjedését [29-30]. Minél nagyobb és összetettebb morfológiájú egy pórus, annál inkább befolyásolja a tönkremenetel folyamatát, s a törési felület rajta keresztül alakul ki [16,21-22,30-31]. Emiatt az össz-pórus területarány/térfogatarány vizsgálatán túl kiemelt figyelmet kell fordítani a legnagyobb méretű pórus vizsgálatára. A töretfelületen a pórus (A_{max, Proj, töretfelület} legnagyobb [mm²]) számos alkalommal megegyezett a vizsgált térfogat, azaz a szakító próbatest jeltávon belüli térfogatának legnagyobb térfogatú pórusával, ami miatt úgy vélik, az A_{max, Proj, töretfelület} megbízhatóbban alkalmazható a törési nyúlás becslésére, mint az $A_{A, Proj, töretfelület}$ pórusjellemző [21-22]. Teng és munkatársai szintén ezen az állásponton vannak [16].

Szakirodalmi kutatások alapján a porozitás ($A_{A, Proj, töretfelület}$) a folyáshatárt kevésbé befolyásolja, közöttük negatív irányú, kis meredekségű lineáris a kapcsolat [14-15, 18-20, 32]. A szakítószilárdság szintén lineáris kapcsolatban áll a porozitással, viszont a kapcsolatukat

leíró függvény meredeksége nagyobb, mint a folyáshatár esetén [14, 33]. A porozitás és a legnagyobb vetített területű pórus méretének növekedésével a nyúlás csökken, a kapcsolatukat leíró függvény lehet lineáris, kvázi-lineáris, illetve nemlineáris függvény. A függvény jellegét a nyúlási sebesség befolyásolhatja [19]:

- lineáris: A_{A, Proj, töretfelület}, A_{max, Proj, töretfelület} [16, 34],
- kvázi-lineáris: A_{A, Proj, töretfelület} [17, 19-20],
- nemlineáris függvéný: $A_{A, Proj, töretfelület}$ [14, 19, 35-36].

Az általunk mért pórusjellemzők összehasonlíthatósága érdekében a legnagyobb vetített területű pórusok területarányát (3) ábrázoltuk az összterületarány mellett, így a 6. ábrán az A_{A max, Proj, töretfelület} [%], illetve az A_{A, Proj, töretfelület} [%] előfordulási gyakorisága látható. 29,17 %-ban (azaz 14 esetben a 48-ból) az értékek nullával egyenlőek, tehát a töretfelületen nem voltak láthatóak pórusok. Megvizsgáltuk a két jellemző viszonyát is, amit a 7. ábra mutat be, lineáris függvényillesztéssel az R2 értéke 0,83. 13 minta esetén egy-egy önálló pórus volt a töretfelületen, melyek közül maximálisan 3,34 % volt a pórus területarány. Az ábrán ezek az adatpontok az x=y összefüggést leíró szaggatott vonalra esnek. További kutatások során a meghatározott

Anyagvizsgálók Lapja

eredményeket össze fogjuk hasonlítani a próbatestek mechanikai jellemzőivel. Figyelembe fogjuk venni a pórusok térbeli eloszlását, keresztmetszeti elhelyezkedésüket és a kristályosodott szövetszerkezetet is. Az eredményeket rangos nemzetközi folyóiratcikkben fogjuk megjelentetni.

7. ábra: A töretfelületen meghatározott porozitás és a legnagyobb méretű pórus területarányának kapcsolata

4. Összefoglalás

A kutatás célja a térbeli kiterjedéssel rendelkező töretfelületeken látható dendritközi pórusok képelemző módszerének a kidolgozása, bemutatása és alkalmazása volt annak érdekében, hogy

- gyakorlatiasan ismertessük az egyedi anyagszerkezeti struktúrák képelemzésének lehetőségét, melyek a hagyományos szürkeségi szinteken alapuló képelemző módszerekkel nem megvalósíthatóak;
- valamint, hogy az eredményeket további vizsgálatokhoz használjuk fel.

A képelemzéssel számszerűen, objektív módon jellemezhetők a felvételeken látható objektumok, így a pórusok is. A töretfelületek esetében viszont a hagyományos eljárással, a felvételt alkotó pixelek szürkeségi szintjei alapján történő elválasztással a pórusok nem azonosíthatóak, mivel jelentős, illetve különböző mértékű szürkeségi szint átfedés van a pórus és a felvétel többi részének szürkeségi szintje között. Szükség van manuális úton az egyes objektumok megjelölésére, amit a mesterséges intelligencia használ fel a vizsgálandó területek pontos detektálására. Kutatásunkban a MIPAR képelemző szoftverben található "Smart Find" auto-szegmentációs algoritmust alkalmaztuk, ami élek keresésével szegmentálja a pórusokat a felvétel többi részétől.

A töretfelületeken, illetve a próbatestek teljes és lokális tönkremeneteli térfogatában 2D-s és 3D-s elemzésekkel meghatározott pórusjellemzők mechanikai paraméterekkel való kapcsolata korrelációs együtthatók és regressziós analízisek segítségével kifejezhetők, amit kutatásunk további szakaszában fogunk vizsgálni.

Köszönetnyilvánítás

A Kulturális és Innovációs Minisztérium ÚNKP-23-3-II. kódszámú Új Nemzeti Kiválóság Programjának a Nemzeti Kutatási, Fejlesztési és Innovációs Alapból finanszírozott szakmai támogatásával készült.

Irodalomjegyzék

- Gácsi Z., Sárközi G., Réti T., Kovács J., Csepeli Zs., Mertinger V.: Sztereológia és képelemzés (pp 27-31; 127-139; 176-190). WellPRess, PHARE, Miskolc, 2001 ISBN 963 86137 69
- [2] Gácsi Z., Barkóczy P.: Számítógépi képelemzés Miskolc, Nemzeti Tankönyvkiadó, 2009
- [3] Gácsi Z., Simon A., Pázmán J.: Fémkompozitok (pp 122-130; 147-196). Miskolci Egyetem kiadó, Miskolc, 2011 ISBN 978 963 661 979 4
- [4] Kim, Y., Hanif, A., Usman, M., Park, W.: Influence of bonded mortar of recycled concrete aggregates on interfacial characteristics – Porosity assessment based on pore segmentation from backscattered electron image analysis. Constr. and Build. Mater., 212, 2019, pp. 149–163. https://doi.org/10.1016/j. conbuildmat.2019.03.265
- Kazup Á.: Alumínium ötvözet félfolyamatos öntésekor kialakuló szövetszerkezetének vizsgálata. Diplomamunka, Miskolci Egyetem, 2020
- [6] Calkovský, M., Müller, E., Meffert, M., Firman, N., Mayer, F., Wegener, M., Gerthsen, D.: Comparison of segmentation algorithms for FIB-SEM tomography of porous polymers: Importance of image contrast for machine learning segmentation. Mater. Charact., 171, 2021, pp. 110806. https://doi.org/10.1016/j. matchar.2020.110806
- [7] Li, L., Yang, J., Liu., W. W., Ren, P.: Overview of the application of quantitative backscattered electron (QBSE) image analysis to characterize the cement-based materials. Constr. and

Build. Mater., 406, 2023, pp. 133332. https://doi.org/10.1016/j. conbuildmat.2023.133332

- [8] Ge, M., Su, F., Zhao, Z., Su, D.: Deep learning analysis on microscopic imaging in materials science. Mater. Today Nano, 11, 2020, pp. 100087. https://doi.org/10.1016/j.mtnano.2020.100087
- [9] Bangaru, S. S., Wang, C., Zhou, X., Hassan, M.: Scanning electron microscopy (SEM) image segmentation for microstructure analysis of concrete using U-net convolutional neural network. Automation in Constr., 144, 2022, pp. 104602. https://doi.org/10.1016/j. autcon.2022.104602
- [10] Bihani, A., Daigle, H., Santos, J. E., Landry, C., Prodanovic, M., Milliken, K.: MudrockNet: Semantic segmentation of mudrock SEM images through deep learning. Computers & Geosciences, 158, 2022, pp. 104952. https://doi.org/10.1016/j.cageo.2021.104952
- [11] Li, P., Zhao, W., Fu, C., Pan, T., Ji, X.: Segmentation of backscattered electron images of cement-based materials using lightweight U-Net with attention mechanism (LWAU-Net). Journal of Build. Eng., 77, 2023, pp. 107547. https://doi.org/10.1016/j. jobe.2023.107547
- [12] Ragone, M., Shahabazian-Yassar, R., Mashayek, F., Yurkiv, V.: Deep learning modeling in microscopy imaging: A review of materials science applications. Progress in Mater. Sci., 138, 2023, pp. 101165. https://doi.org/10.1016/j.pmatsci.2023.101165
- [13] Azimi, S. M., Britz, D., Engstler, M., Fritz, M., Mücklich, F.: Advanced Steel Microstructural Classification by Deep Learning Methods. Sci. Rep., 8, 2018, pp. 1–14. https://doi.org/10.1038/ s41598-018-20037-5
- [14] Lee, C. D.: Effects of microporosity on tensile properties of A356 aluminum alloy. Mater. Sci. Eng. A, 464 (1–2), 2007, pp. 249–254. https://doi.org/10.1016/j.msea.2007.01.130
- [15] Teng, X., Mae, H., Bai, Y., Wierzbicki, T.: Statistical analysis of ductile fracture properties of an aluminum casting. Eng. Fract. Mech., 75 (15), 2008, pp. 4610–4625. https://doi.org/10.1016/j. engfracmech.2008.04.016
- [16] Teng, X., Mae, H., Bai, Y., Wierzbicki, T.: Pore size and fracture ductility of aluminum low pressure die casting. Eng. Fract. Mech., 76 (8), 2009, pp. 983–996. https://doi.org/10.1016/j. engfracmech.2009.01.001
- [17] Lee, C. D.: Effect of damage evolution of Si particles on the variability of the tensile ductility of squeeze-cast Al–10%Si–2%Cu– 0.4%Mg alloy. Mater. Sci. Eng. A, 527, 2010, pp. 3144–3150. https://doi.org/10.1016/j.msea.2010.01.061
- [18] Lee, C. D., Youn, J., Lee, Y., Kim, J.: Effect of eutectic Si particles on the defect susceptibility of tensile properties to microporosity variation in Al-xSi binary alloys. Mater. Sci. Eng. A, 678, 2016, pp. 227–234. https://doi.org/10.1016/j.msea.2016.09.111
- [19] Lee, C. D., Youn, J., Kim, Y.: Effect of strain rate on the defect susceptibility of tensile properties to porosity variation. Mater. Sci. Eng. A, 683, 2017, pp. 135–142. http://dx.doi.org/10.1016/j. msea.2016.12.007
- [20] Lordan, E., Lazaro-Nebreda, J., Zhang, Y., Dou, K., Blake, P., Fan, Z.: On the relationship between internal porosity and the tensile ductility of aluminium alloy die-castings. Mater. Sci. Eng. A, 778, 2020, pp. 139107. https://doi.org/10.1016/j.msea.2020.139107
- [21] Liu, R., Zheng, J., Godlewski, L., Zindel, J., Li, M., Li, W., Huang, S.: Influence of pore characteristics and eutectic particles on the tensile properties of Al–Si–Mn–Mg high pressure die casting alloy. Mater. Sci. Eng. A, 783, 2020, pp. 139280. https://doi.org/10.1016/j. msea.2020.139280

- [22] Zhang, Y., Zheng, J., Xia, Y., Shou, H., Tan, W., Han, W., Liu, Q.: Porosity quantification for ductility prediction in high pressure die casting AM60 alloy using 3D X-ray tomography. Mater. Sci. Eng. A, 772, 2020, pp. 138–781. https://doi.org/10.1016/j. msea.2019.138781
- [23] MIPAR user manual: Segmentation. https://www.manula.com/ manuals/mipar/user-manual/latest/en/topic/adaptive-threshold (2024. 01. 07.)
- [24] Protiere, A., Sapiro, G.: Interactive Image Segmentation via Adaptive Weighted Distances. IEEE Transactions on Image Process, 16 (4), 2007, pp. 1046–57. https://doi.org/10.1109/ TIP.2007.891796
- [25] Meyer, F.: Topographic distance and watershed lines. Signal Process, 38 (1), 1994, pp. 113–125. https://doi.org/10.1016/0165-1684(94)90060-4
- [26] Li, Y., Sun, J., Tang, C. K., Shum, H. Y.: Lazy Snapping. Proceedings from the 31st International Conference on Computer Graphics and Interactive Techniques, ACM Transactions on Graphics, 23 (3), 2004, pp. 303-308. https://doi.org/10.1145/1015706.1015719
- [27] Lin, Z., Zhang, Z., Zhu, Z. Y., Fan, D. P., Liu, X. L.: Sequential interactive image segmentation. Computational Visual Media, 9 (4), 2023, pp. 753–765. https://doi.org/10.1007/s41095-022-0302-8
- [28] Mathworks: Lazy Snapping. https://au.mathworks.com/help/images/ref/lazysnapping.html?fbclid= lwAR2J9Pa4oUPgNONBTnFC9MG2R6wIFmvKYBHxuy0azu25CY0TH_ bB6Q6vHfM (2024. 01. 07.)
- [29] Murakami, Y., Endo, M.: Effects of defects, inclusions and inhomogeneities on fatigue strength. Int. J. Fatigue, 16, 1994, pp. 163–182. https://doi.org/10.1016/0142-1123(94)90001-9
- [30] Kazup Á., Gácsi Z.: AlSi7Mg0.3 ötvözet in situ szakítóvizsgálata számítógépes röntgen tomográfia (CT) segítségével. Doktorandusz Almanach, 2 (2), 2023, pp. 7–13. ISSN 2939-7294
- [31] Yang, B. C., Chen, S. F., Song, H. W., Zhang, S. H., Chang, H. P., Xu, S. W., Zhu, Z. H., Li, C. H.: Effects of microstructure coarsening and casting pores on the tensile and fatigue properties of cast A356-T6 aluminum alloy: A comparative investigation. Mater. Sci. Eng. A, 857, 2022, pp. 144106. https://doi.org/10.1016/j. msea.2022.144106
- [32] Lee, S. G., Patel, G. R., Gokhale, A. M., Sreeranganathan, A., Horstemeyer, M. F.: Variability in the tensile ductility of highpressure die-cast AM50 Mg-alloy. Scripta Mater., 53 (7), 2005, pp. 851–856. https://doi.org/10.1016/j.scriptamat.2005.06.002
- [33] Surappa, M. K., Blank, E., Januet, J. C., Effect of macro-porosity on the strength and ductility of cast Al-7Si-0.3Mg alloy. Scripta Metall., 20, 1986, pp. 1281–1286. https://doi.org/10.1016/0036-9748(86)90049-9
- [34] Zhou, B., Meng, D. H., Wu, D., Tang, J. F., Chen, R. S., Li, P. J., Han, E.-H.: Characterization of porosity and its effect on the tensile properties of Mg-6Gd-3Y-0.5Zr alloy. Mater. Charact., 152, 2019, pp. 204–212. https://doi.org/10.1016/j.matchar.2019.04.021
- [35] Gokhale, A. M., Patel, G. R.: Quantitative fractographic analysis of variability in tensile ductility of a squeeze cast Al–Si–Mg base alloy. Mater. Charact., 54 (1), 2005, pp. 13–20. https://doi.org/10.1016/j. matchar.2004.10.003
- [36] Gokhale, A. M., Patel, G. R.: Origins of variability in the fracturerelated mechanical properties of a tilt-pour-permanent-mold cast Al-alloy. Scripta Mater. 52 (3), 2005, pp. 237–241. https://doi. org/10.1016/j.scriptamat.2004.09.011